Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Appl Environ Microbiol ; 90(2): e0173623, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38259076

RESUMO

In this study, we conducted an in-depth analysis to characterize potential Acanthamoeba castellanii (Ac) proteins capable of recognizing fungal ß-1,3-glucans. Ac specifically anchors curdlan or laminarin, indicating the presence of surface ß-1,3-glucan-binding molecules. Using optical tweezers, strong adhesion of laminarin- or curdlan-coated beads to Ac was observed, highlighting their adhesive properties compared to controls (characteristic time τ of 46.9 and 43.9 s, respectively). Furthermore, Histoplasma capsulatum (Hc) G217B, possessing a ß-1,3-glucan outer layer, showed significant adhesion to Ac compared to a Hc G186 strain with an α-1,3-glucan outer layer (τ of 5.3 s vs τ 83.6 s). The addition of soluble ß-1,3-glucan substantially inhibited this adhesion, indicating the involvement of ß-1,3-glucan recognition. Biotinylated ß-1,3-glucan-binding proteins from Ac exhibited higher binding to Hc G217B, suggesting distinct recognition mechanisms for laminarin and curdlan, akin to macrophages. These observations hinted at the ß-1,3-glucan recognition pathway's role in fungal entrance and survival within phagocytes, supported by decreased fungal viability upon laminarin or curdlan addition in both phagocytes. Proteomic analysis identified several Ac proteins capable of binding ß-1,3-glucans, including those with lectin/glucanase superfamily domains, carbohydrate-binding domains, and glycosyl transferase and glycosyl hydrolase domains. Notably, some identified proteins were overexpressed upon curdlan/laminarin challenge and also demonstrated high affinity to ß-1,3-glucans. These findings underscore the complexity of binding via ß-1,3-glucan and suggest the existence of alternative fungal recognition pathways in Ac.IMPORTANCEAcanthamoeba castellanii (Ac) and macrophages both exhibit the remarkable ability to phagocytose various extracellular microorganisms in their respective environments. While substantial knowledge exists on this phenomenon for macrophages, the understanding of Ac's phagocytic mechanisms remains elusive. Recently, our group identified mannose-binding receptors on the surface of Ac that exhibit the capacity to bind/recognize fungi. However, the process was not entirely inhibited by soluble mannose, suggesting the possibility of other interactions. Herein, we describe the mechanism of ß-1,3-glucan binding by A. castellanii and its role in fungal phagocytosis and survival within trophozoites, also using macrophages as a model for comparison, as they possess a well-established mechanism involving the Dectin-1 receptor for ß-1,3-glucan recognition. These shed light on a potential parallel evolution of pathways involved in the recognition of fungal surface polysaccharides.


Assuntos
Acanthamoeba castellanii , Amoeba , beta-Glucanas , Amoeba/metabolismo , Manose/metabolismo , Proteômica , beta-Glucanas/metabolismo , Glucanos/metabolismo , Histoplasma/metabolismo
2.
Fungal Biol ; 127(12): 1551-1565, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38097329

RESUMO

Histoplasma experiences nutritional stress during infection as a result of immune cells manipulating essential nutrients, such as metal ions, carbon, nitrogen, and vitamins. Copper (Cu) is an essential metallic micronutrient for living organisms; however, it is toxic in excess. Microbial pathogens must resist copper toxicity to survive. In the case of Histoplasma, virulence is supported by high-affinity copper uptake during late infection, and copper detoxification machinery during early macrophage infection. The objective of this study was to characterize the global molecular adaptation of Histoplasma capsulatum to copper excess using proteomics. Proteomic data revealed that carbohydrate breakdown was repressed, while the lipid degradation pathways were induced. Surprisingly, the production of fatty acids/lipids was also observed, which is likely a result of Cu-mediated damage to lipids. Additionally, the data showed that the fungus increased the exposition of glycan and chitin on the cell surface in high copper. Yeast upregulated antioxidant enzymes to counteract ROS accumulation. The induction of amino acid degradation, fatty acid oxidation, citric acid cycle, and oxidative phosphorylation suggest an increase in aerobic respiration for energy generation. Thus, H. capsulatum's adaptive response to high Cu is putatively composed of metabolic changes to support lipid and cell wall remodeling and fight oxidative stress.


Assuntos
Cobre , Histoplasma , Histoplasma/metabolismo , Cobre/metabolismo , Proteômica , Estresse Oxidativo , Ácidos Graxos , Parede Celular/metabolismo
3.
mBio ; 14(4): e0328422, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37432032

RESUMO

Peroxisomes are versatile eukaryotic organelles essential for many functions in fungi, including fatty acid metabolism, reactive oxygen species detoxification, and secondary metabolite biosynthesis. A suite of Pex proteins (peroxins) maintains peroxisomes, while peroxisomal matrix enzymes execute peroxisome functions. Insertional mutagenesis identified peroxin genes as essential components supporting the intraphagosomal growth of the fungal pathogen Histoplasma capsulatum. Disruption of the peroxins Pex5, Pex10, or Pex33 in H. capsulatum prevented peroxisome import of proteins targeted to the organelle via the PTS1 pathway. This loss of peroxisome protein import limited H. capsulatum intracellular growth in macrophages and attenuated virulence in an acute histoplasmosis infection model. Interruption of the alternate PTS2 import pathway also attenuated H. capsulatum virulence, although only at later time points of infection. The Sid1 and Sid3 siderophore biosynthesis proteins contain a PTS1 peroxisome import signal and localize to the H. capsulatum peroxisome. Loss of either the PTS1 or PTS2 peroxisome import pathway impaired siderophore production and iron acquisition in H. capsulatum, demonstrating compartmentalization of at least some biosynthetic steps for hydroxamate siderophore biosynthesis. However, the loss of PTS1-based peroxisome import caused earlier virulence attenuation than either the loss of PTS2-based protein import or the loss of siderophore biosynthesis, indicating additional PTS1-dependent peroxisomal functions are important for H. capsulatum virulence. Furthermore, disruption of the Pex11 peroxin also attenuated H. capsulatum virulence independently of peroxisomal protein import and siderophore biosynthesis. These findings demonstrate peroxisomes contribute to H. capsulatum pathogenesis by facilitating siderophore biosynthesis and another unidentified role(s) for the organelle during fungal virulence. IMPORTANCE The fungal pathogen Histoplasma capsulatum infects host phagocytes and establishes a replication-permissive niche within the cells. To do so, H. capsulatum overcomes and subverts antifungal defense mechanisms which include the limitation of essential micronutrients. H. capsulatum replication within host cells requires multiple distinct functions of the fungal peroxisome organelle. These peroxisomal functions contribute to H. capsulatum pathogenesis at different times during infection and include peroxisome-dependent biosynthesis of iron-scavenging siderophores to enable fungal proliferation, particularly after activation of cell-mediated immunity. The multiple essential roles of fungal peroxisomes reveal this organelle as a potential but untapped target for the development of therapeutics.


Assuntos
Histoplasma , Histoplasma/metabolismo , Histoplasma/patogenicidade , Virulência , Sideróforos/biossíntese , Peroxinas/metabolismo , Peroxissomos/metabolismo , Adaptação Fisiológica
4.
PLoS Pathog ; 18(9): e1010237, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36174103

RESUMO

The fungal pathogen Histoplasma capsulatum (Hc) invades, replicates within, and destroys macrophages. To interrogate the molecular mechanisms underlying this interaction, we conducted a host-directed CRISPR-Cas9 screen and identified 361 genes that modify macrophage susceptibility to Hc infection, greatly expanding our understanding of host gene networks targeted by Hc. We identified pathways that have not been previously implicated in Hc interaction with macrophages, including the ragulator complex (involved in nutrient stress sensing), glycosylation enzymes, protein degradation machinery, mitochondrial respiration genes, solute transporters, and the ER membrane complex (EMC). The highest scoring protective hits included the complement C3a receptor (C3aR), a G-protein coupled receptor (GPCR) that recognizes the complement fragment C3a. Although it is known that complement components react with the fungal surface, leading to opsonization and release of small peptide fragments such as C3a, a role for C3aR in macrophage interactions with fungi has not been elucidated. We demonstrated that whereas C3aR is dispensable for macrophage phagocytosis of bacteria and latex beads, it is critical for optimal macrophage capture of pathogenic fungi, including Hc, the ubiquitous fungal pathogen Candida albicans, and the causative agent of Valley Fever Coccidioides posadasii. We showed that C3aR localizes to the early phagosome during Hc infection where it coordinates the formation of actin-rich membrane protrusions that promote Hc capture. We also showed that the EMC promotes surface expression of C3aR, likely explaining its identification in our screen. Taken together, our results provide new insight into host processes that affect Hc-macrophage interactions and uncover a novel and specific role for C3aR in macrophage recognition of fungi.


Assuntos
Actinas , Histoplasmose , Receptores de Complemento/metabolismo , Macrófagos/metabolismo , Histoplasma/genética , Histoplasma/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fragmentos de Peptídeos
5.
PLoS Pathog ; 18(6): e1010417, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731824

RESUMO

Intracellular pathogens secrete effectors to manipulate their host cells. Histoplasma capsulatum (Hc) is a fungal intracellular pathogen of humans that grows in a yeast form in the host. Hc yeasts are phagocytosed by macrophages, where fungal intracellular replication precedes macrophage lysis. The most abundant virulence factor secreted by Hc yeast cells is Calcium Binding Protein 1 (Cbp1), which is absolutely required for macrophage lysis. Here we take an evolutionary, structural, and cell biological approach to understand Cbp1 function. We find that Cbp1 is present only in the genomes of closely related dimorphic fungal species of the Ajellomycetaceae family that lead primarily intracellular lifestyles in their mammalian hosts (Histoplasma, Paracoccidioides, and Emergomyces), but not conserved in the extracellular fungal pathogen Blastomyces dermatitidis. We observe a high rate of fixation of non-synonymous substitutions in the Cbp1 coding sequences, indicating that Cbp1 is under positive selection. We determine the de novo structures of Hc H88 Cbp1 and the Paracoccidioides americana (Pb03) Cbp1, revealing a novel "binocular" fold consisting of a helical dimer arrangement wherein two helices from each monomer contribute to a four-helix bundle. In contrast to Pb03 Cbp1, we show that Emergomyces Cbp1 orthologs are unable to stimulate macrophage lysis when expressed in the Hc cbp1 mutant. Consistent with this result, we find that wild-type Emergomyces africanus yeast are able to grow within primary macrophages but are incapable of lysing them. Finally, we use subcellular fractionation of infected macrophages and indirect immunofluorescence to show that Cbp1 localizes to the macrophage cytosol during Hc infection, making this the first instance of a phagosomal human fungal pathogen directing an effector into the cytosol of the host cell. We additionally show that Cbp1 forms a complex with Yps-3, another known Hc virulence factor that accesses the cytosol. Taken together, these data imply that Cbp1 is a fungal virulence factor under positive selection that localizes to the cytosol to trigger host cell lysis.


Assuntos
Proteínas de Ligação ao Cálcio , Histoplasmose , Macrófagos , Fatores de Virulência , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Histoplasma/metabolismo , Histoplasmose/microbiologia , Humanos , Macrófagos/microbiologia , Mamíferos , Saccharomyces cerevisiae , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
7.
mBio ; 12(6): e0297221, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34809453

RESUMO

Lipids play a fundamental role in fungal cell biology, being essential cell membrane components and major targets of antifungal drugs. A deeper knowledge of lipid metabolism is key for developing new drugs and a better understanding of fungal pathogenesis. Here, we built a comprehensive map of the Histoplasma capsulatum lipid metabolic pathway by incorporating proteomic and lipidomic analyses. We performed genetic complementation and overexpression of H. capsulatum genes in Saccharomyces cerevisiae to validate reactions identified in the map and to determine enzymes responsible for catalyzing orphan reactions. The map led to the identification of both the fatty acid desaturation and the sphingolipid biosynthesis pathways as targets for drug development. We found that the sphingolipid biosynthesis inhibitor myriocin, the fatty acid desaturase inhibitor thiocarlide, and the fatty acid analog 10-thiastearic acid inhibit H. capsulatum growth in nanomolar to low-micromolar concentrations. These compounds also reduced the intracellular infection in an alveolar macrophage cell line. Overall, this lipid metabolic map revealed pathways that can be targeted for drug development. IMPORTANCE It is estimated that 150 people die per hour due to the insufficient therapeutic treatments to combat fungal infections. A major hurdle to developing antifungal therapies is the scarce knowledge on the fungal metabolic pathways and mechanisms of virulence. In this context, fungal lipid metabolism is an excellent candidate for developing drugs due to its essential roles in cellular scaffolds, energy storage, and signaling transductors. Here, we provide a detailed map of Histoplasma capsulatum lipid metabolism. The map revealed points of this fungus lipid metabolism that can be targeted for developing antifungal drugs.


Assuntos
Histoplasma/genética , Histoplasma/metabolismo , Metabolismo dos Lipídeos , Ácidos Graxos/biossíntese , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Histoplasma/crescimento & desenvolvimento , Histoplasmose/microbiologia , Humanos , Lipidômica , Proteômica , Esfingolipídeos/biossíntese
8.
PLoS Negl Trop Dis ; 15(3): e0009215, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33684128

RESUMO

BACKGROUND: The progressive disseminated histoplasmosis (PDH) has been associated with severe disease and high risk of death among people living with HIV (PLWHIV). Therefore, the purpose of this multicenter, prospective, double-blinded study done in ten Mexican hospitals was to determine the diagnostic accuracy of detecting Histoplasma capsulatum antigen in urine using the IMMY ALPHA Histoplasma EIA kit (IAHE), clarus Histoplasma GM Enzyme Immunoassay (cHGEI IMMY) and MiraVista Histoplasma Urine Antigen LFA (MVHUALFA); as well as the Hcp100 and 1281-1283220SCAR nested PCRs in blood, bone-marrow, tissue biopsies and urine. METHODOLOGY/PRINCIPAL FINDINGS: We included 415 PLWHIV older than 18 years of age with suspicion of PDH. Using as diagnostic standard recovery of H. capsulatum in blood, bone marrow or tissue cultures, or histopathological exam compatible, detected 108 patients (26%, [95%CI, 21.78-30.22]) with proven-PDH. We analyzed 391 urine samples by the IAHE, cHGEI IMMY and MVHUALFA; the sensitivity/specificity values obtained were 67.3% (95% CI, 57.4-76.2) / 96.2% (95% CI, 93.2-98.0) for IAHE, 91.3% (95% CI, 84.2-96.0) / 90.9% (95% CI, 87.0-94.0) for cHGEI IMMY and 90.4% (95% CI, 83.0-95.3) / 92.3% (95% CI, 88.6-95.1) for MVHUALFA. The Hcp100 nested PCR was performed on 393, 343, 75 and 297, blood, bone marrow, tissue and urine samples respectively; the sensitivity/specificity values obtained were 62.9% (95%CI, 53.3-72.5)/ 89.5% (95%CI, 86.0-93.0), 65.9% (95%CI, 56.0-75.8)/ 89.0% (95%CI, 85.2-92.9), 62.1% (95%CI, 44.4-79.7)/ 82.6% (95%CI, 71.7-93.6) and 34.9% (95%CI, 24.8-46.2)/ 67.3% (95%CI, 60.6-73.5) respectively; and 1281-1283220SCAR nested PCR was performed on 392, 344, 75 and 291, respectively; the sensitivity/specificity values obtained were 65.3% (95% CI, 55.9-74.7)/ 58.8% (95%CI, 53.2-64.5), 70.8% (95%CI, 61.3-80.2)/ 52.9% (95%CI, 46.8-59.1), 71.4% (95%CI, 54.7-88.2)/ 40.4% (95%CI, 26.4-54.5) and 18.1% (95%CI, 10.5-28.1)/ 90.4% (95%CI, 85.5-94.0), respectively. CONCLUSIONS/SIGNIFICANCE: The cHGEI IMMY and MVHUALFA tests showed excellent performance for the diagnosis of PDH in PLWHIV. The integration of these tests in clinical laboratories will certainly impact on early diagnosis and treatment.


Assuntos
Antígenos de Fungos/urina , Infecções por HIV/complicações , HIV-1 , Histoplasmose/complicações , Adulto , Feminino , Infecções por HIV/epidemiologia , Histoplasma/imunologia , Histoplasma/metabolismo , Histoplasmose/epidemiologia , Histoplasmose/urina , Humanos , Técnicas Imunoenzimáticas , Masculino , México/epidemiologia , Pessoa de Meia-Idade , Estudos Prospectivos , Sensibilidade e Especificidade , Adulto Jovem
9.
Cell Microbiol ; 22(9): e13217, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32406582

RESUMO

Histoplasma capsulatum is a dimorphic fungus that most frequently causes pneumonia, but can also disseminate and proliferate in diverse tissues. Histoplasma capsulatum has a complex secretion system that mediates the release of macromolecule-degrading enzymes and virulence factors. The formation and release of extracellular vesicles (EVs) are an important mechanism for non-conventional secretion in both ascomycetes and basidiomycetes. Histoplasma capsulatum EVs contain diverse proteins associated with virulence and are immunologically active. Despite the growing knowledge of EVs from H. capsulatum and other pathogenic fungi, the extent that changes in the environment impact the sorting of organic molecules in EVs has not been investigated. In this study, we cultivated H. capsulatum with distinct culture media to investigate the potential plasticity in EV loading in response to differences in nutrition. Our findings reveal that nutrition plays an important role in EV loading and formation, which may translate into differences in biological activities of these fungi in various fluids and tissues.


Assuntos
Meios de Cultura/química , Vesículas Extracelulares/metabolismo , Histoplasma/metabolismo , Nutrientes/farmacologia , Meios de Cultura/farmacologia , Vesículas Extracelulares/química , Vesículas Extracelulares/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Histoplasma/efeitos dos fármacos
11.
mBio ; 11(2)2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265333

RESUMO

Microbial pathogens exploit host nutrients to proliferate and cause disease. Intracellular pathogens, particularly those exclusively living in the phagosome such as Histoplasma capsulatum, must adapt and acquire nutrients within the nutrient-limited phagosomal environment. In this study, we investigated which host nutrients could be utilized by Histoplasma as carbon sources to proliferate within macrophages. Histoplasma yeasts can grow on hexoses and amino acids but not fatty acids as the carbon source in vitro Transcriptional analysis and metabolism profiling showed that Histoplasma yeasts downregulate glycolysis and fatty acid utilization but upregulate gluconeogenesis within macrophages. Depletion of glycolysis or fatty acid utilization pathways does not prevent Histoplasma growth within macrophages or impair virulence in vivo However, loss of function in Pck1, the enzyme catalyzing the first committed step of gluconeogenesis, impairs Histoplasma growth within macrophages and severely attenuates virulence in vivo, indicating that Histoplasma yeasts rely on catabolism of gluconeogenic substrates (e.g., amino acids) to proliferate within macrophages.IMPORTANCEHistoplasma is a primary human fungal pathogen that survives and proliferates within host immune cells, particularly within the macrophage phagosome compartment. The phagosome compartment is a nutrient-limited environment, requiring Histoplasma yeasts to be able to assimilate available carbon sources within the phagosome to meet their nutritional needs. In this study, we showed that Histoplasma yeasts do not utilize fatty acids or hexoses for growth within macrophages. Instead, Histoplasma yeasts consume gluconeogenic substrates to proliferate in macrophages. These findings reveal the phagosome composition from a nutrient standpoint and highlight essential metabolic pathways that are required for a phagosomal pathogen to proliferate in this intracellular environment.


Assuntos
Gluconeogênese , Histoplasma/metabolismo , Macrófagos/microbiologia , Redes e Vias Metabólicas , Fagossomos/microbiologia , Animais , Linhagem Celular , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Glicólise , Histoplasma/crescimento & desenvolvimento , Histoplasma/patogenicidade , Histoplasmose/microbiologia , Pulmão/microbiologia , Macrófagos/química , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Fagossomos/química , Virulência
12.
Med Mycol ; 58(8): 1169-1177, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32119085

RESUMO

The cell wall is one of the most important structures of pathogenic fungi, enabling initial interaction with the host and consequent modulation of immunological responses. Over the years, some researchers have shown that cell wall components of Histoplasma capsulatum vary among fungal isolates, and one of the major differences is the presence or absence of α-(1,3)-glucan, classifying wild-type fungi as chemotypes II or I, respectively. The present work shows that an isolate of H. capsulatum chemotype I induced lower levels of interleukin (IL)-8 secretion by the lung epithelial cell line A549, when compared to chemotype II yeasts. Thus, we expected that the absence of α-glucan in spontaneous variant yeasts, which were isolated from chemotype II cultures, would modify IL-8 secretion by A549 cells, but surprisingly, these fungi promoted similar levels of IL-8 secretion as their wild-type counterpart. Furthermore, when using a specific inhibitor for Syk activation, we observed that this inhibitor reduced IL-8 levels in A549 cell cultures infected with wild type chemotype I fungi. This inhibitor failed to reduce this cytokine levels in A549 cell cultures infected with chemotype II and their spontaneous variant yeasts, which also do not present α-glucan on their surface. The importance of SFKs and PKC δ in this event was also analyzed. Our results show that different isolates of H. capsulatum modulate distinct cell signaling pathways to promote cytokine secretion in host epithelial cells, emphasizing the existence of various mechanisms for Histoplasma pathogenicity.


Assuntos
Células Epiteliais Alveolares/metabolismo , Histoplasma/metabolismo , Interleucina-8/metabolismo , Células A549 , Células Epiteliais Alveolares/microbiologia , Parede Celular/metabolismo , Glucanos/metabolismo , Histoplasma/isolamento & purificação , Interações Hospedeiro-Patógeno , Humanos , Pulmão/patologia , Proteína Quinase C-delta/metabolismo , Transdução de Sinais , Especificidade da Espécie , Quinase Syk/metabolismo , Quinases da Família src/metabolismo
13.
Mycopathologia ; 185(1): 169-174, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31667672

RESUMO

Sex is genetically determined in Histoplasma capsulatum, governed by a sex-specific region in the genome called the mating-type locus (MAT1). We investigate the distribution of isolates of two H. capsulatum mating types in the clades circulating in Buenos Aires, Argentina. Forty-nine H. capsulatum isolates were obtained from the culture collection of the Mycology Center. The MAT1 locus was identified by PCR from the yeast suspension. The analysis of forty-eight isolates from clinical samples exhibited a ratio of 1.7 (MAT1-1:MAT1-2) and the only isolate from soil was MAT1-1. Forty-five H. capsulatum isolates belonged to the LAm B clade (H. capsulatum from Latin American group B clade) and showed a ratio of 1.8 (MAT1-1:MAT1-2). These results suggest an association between the mating types in isolates belonging to the LAm B clade. It remains to be defined whether a greater virulence should be attributed to the differences between the strains of the opposite mating type of the LAm B clade.


Assuntos
Genes Fúngicos Tipo Acasalamento/fisiologia , Histoplasma/fisiologia , Argentina , DNA Fúngico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos Tipo Acasalamento/genética , Histoplasma/genética , Histoplasma/metabolismo
14.
PLoS Pathog ; 14(11): e1007444, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30452484

RESUMO

Copper toxicity and copper limitation can both be effective host defense mechanisms against pathogens. Tolerance of high copper by fungi makes toxicity as a defense mechanism largely ineffective against fungal pathogens. A forward genetic screen for Histoplasma capsulatum mutant yeasts unable to replicate within macrophages showed the Ctr3 copper transporter is required for intramacrophage proliferation. Ctr3 mediates copper uptake and is required for growth in low copper. Transcription of the CTR3 gene is induced by differentiation of H. capsulatum into pathogenic yeasts and by low available copper, but not decreased iron. Low expression of a CTR3 transcriptional reporter by intracellular yeasts implies that phagosomes of non-activated macrophages have moderate copper levels. This is further supported by the replication of Ctr3-deficient yeasts within the phagosome of non-activated macrophages. However, IFN-γ activation of phagocytes causes restriction of phagosomal copper as shown by upregulation of the CTR3 transcriptional reporter and by the failure of Ctr3-deficient yeasts, but not Ctr3 expressing yeasts, to proliferate within these macrophages. Accordingly, in a respiratory model of histoplasmosis, Ctr3-deficient yeasts are fully virulent during phases of the innate immune response but are attenuated after the onset of adaptive immunity. Thus, while technical limitations prevent direct measurement of phagosomal copper concentrations and copper-independent factors can influence gene expression, both the CTR3 promoter induction and the attenuation of Ctr3-deficient yeasts indicate activation of macrophages switches the phagosome from a copper-replete to a copper-depleted environment, forcing H. capsulatum reliance on Ctr3 for copper acquisition.


Assuntos
Cobre/metabolismo , Interferon gama/metabolismo , Fagossomos/metabolismo , Animais , Antiporters/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular , Cobre/toxicidade , Histoplasma/imunologia , Histoplasma/metabolismo , Histoplasmose/metabolismo , Ferro/metabolismo , Ativação de Macrófagos/fisiologia , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL
15.
J Clin Microbiol ; 56(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30021828

RESUMO

The diagnosis of central nervous system (CNS) histoplasmosis is often difficult. Although cerebrospinal fluid (CSF) (1,3)-ß-d-glucan (BDG) is available as a biological marker for the diagnosis of fungal meningitis, there are limited data on its use for the diagnosis of Histoplasma meningitis. We evaluated CSF BDG detection, using the Fungitell assay, in patients with CNS histoplasmosis and controls. A total of 47 cases and 153 controls were identified. The control group included 13 patients with a CNS fungal infection other than histoplasmosis. Forty-nine percent of patients with CNS histoplasmosis and 43.8% of controls were immunocompromised. The median CSF BDG level was 85 pg/ml for cases, compared to <31 pg/ml for all controls (P < 0.05) and 82 pg/ml for controls with other causes of fungal meningitis (P = 0.27). The sensitivity for detection of BDG in CSF was 53.2%, whereas the specificity was 86.9% versus all controls and 46% versus other CNS fungal infections. CSF BDG levels of ≥80 pg/ml are neither sensitive nor specific to support a diagnosis of Histoplasma meningitis.


Assuntos
Técnicas de Laboratório Clínico/métodos , Histoplasmose/diagnóstico , beta-Glucanas/líquido cefalorraquidiano , Adulto , Biomarcadores/líquido cefalorraquidiano , Histoplasma/isolamento & purificação , Histoplasma/metabolismo , Histoplasmose/líquido cefalorraquidiano , Humanos , Meningite Fúngica/líquido cefalorraquidiano , Meningite Fúngica/diagnóstico , Meningite Fúngica/microbiologia , Proteoglicanas , Curva ROC , Kit de Reagentes para Diagnóstico
16.
mBio ; 9(1)2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29295913

RESUMO

The ability to grow at mammalian body temperatures is critical for pathogen infection of humans. For the thermally dimorphic fungal pathogen Histoplasma capsulatum, elevated temperature is required for differentiation of mycelia or conidia into yeast cells, a step critical for invasion and replication within phagocytic immune cells. Posttranslational glycosylation of extracellular proteins characterizes factors produced by the pathogenic yeast cells but not those of avirulent mycelia, correlating glycosylation with infection. Histoplasma yeast cells lacking the Pmt1 and Pmt2 protein mannosyltransferases, which catalyze O-linked mannosylation of proteins, are severely attenuated during infection of mammalian hosts. Cells lacking Pmt2 have altered surface characteristics that increase recognition of yeast cells by the macrophage mannose receptor and reduce recognition by the ß-glucan receptor Dectin-1. Despite these changes, yeast cells lacking these factors still associate with and survive within phagocytes. Depletion of macrophages or neutrophils in vivo does not recover the virulence of the mutant yeast cells. We show that yeast cells lacking Pmt functions are more sensitive to thermal stress in vitro and consequently are unable to productively infect mice, even in the absence of fever. Treatment of mice with cyclophosphamide reduces the normal core body temperature of mice, and this decrease is sufficient to restore the infectivity of O-mannosylation-deficient yeast cells. These findings demonstrate that O-mannosylation of proteins increases the thermotolerance of Histoplasma yeast cells, which facilitates infection of mammalian hosts.IMPORTANCE For dimorphic fungal pathogens, mammalian body temperature can have contrasting roles. Mammalian body temperature induces differentiation of the fungal pathogen Histoplasma capsulatum into a pathogenic state characterized by infection of host phagocytes. On the other hand, elevated temperatures represent a significant barrier to infection by many microbes. By functionally characterizing cells lacking O-linked mannosylation enzymes, we show that protein mannosylation confers thermotolerance on H. capsulatum, enabling infection of mammalian hosts.


Assuntos
Proteínas Fúngicas/metabolismo , Histoplasma/fisiologia , Histoplasma/efeitos da radiação , Manosiltransferases/metabolismo , Viabilidade Microbiana/efeitos da radiação , Processamento de Proteína Pós-Traducional , Animais , Modelos Animais de Doenças , Histoplasma/metabolismo , Histoplasmose/microbiologia , Histoplasmose/patologia , Camundongos Endogâmicos C57BL , Virulência
17.
Med Mycol ; 56(4): 506-509, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992332

RESUMO

Melanization of Histoplasma capsulatum remains poorly described, particularly in regards to the forms of melanin produced. In the present study, 30 clinical and environmental H. capsulatum strains were grown in culture media with or without L-tyrosine under conditions that produced either mycelial or yeast forms. Mycelial cultures were not melanized under the studied conditions. However, all strains cultivated under yeast conditions produced a brownish to black soluble pigment compatible with pyomelanin when grew in presence of L-tyrosine. Sulcotrione inhibited pigment production in yeast cultures, strengthening the hyphothesis that H. capsulatum yeast forms produce pyomelanin. Since pyomelanin is produced by the fungal parasitic form, this pigment may be involved in H. capsulatum virulence.


Assuntos
Histoplasma/efeitos dos fármacos , Histoplasma/metabolismo , Tirosina/farmacologia , Animais , Meios de Cultura/química , Cicloexanonas/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Histoplasma/citologia , Humanos , Concentração de Íons de Hidrogênio , Melaninas/genética , Melaninas/metabolismo , Mesilatos/farmacologia , Pigmentos Biológicos/genética , Pigmentos Biológicos/metabolismo , Virulência
18.
Curr Opin Microbiol ; 40: 1-7, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29096192

RESUMO

Mammalian body temperature triggers differentiation of the fungal pathogen Histoplasma capsulatum into yeast cells. The Drk1 regulatory kinase and an interdependent network of Ryp transcription factors establish the yeast state. Beyond morphology, the differentiation-dependent expression program equips yeasts for invasion and survival within phagosomes. Yeast cells produce α-glucan and the Eng1 endoglucanase which hide yeasts from immune detection. Secretion of yeast phase-specific Sod3 and CatB detoxify phagocyte-derived reactive oxygen molecules. Histoplasma cells adapt to iron and zinc limitation in activated macrophages by production of siderophores and the Zrt2 transporter, respectively. Yeasts also respond to inflammation-associated hypoxia. Histoplasma pathogenicity thus relies on factors controlled by yeast differentiation as well as environment-dependent responses.


Assuntos
Histoplasma/citologia , Histoplasmose/microbiologia , Fagócitos/microbiologia , Animais , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Histoplasma/genética , Histoplasma/crescimento & desenvolvimento , Histoplasma/metabolismo , Histoplasmose/genética , Histoplasmose/metabolismo , Humanos , Fagócitos/metabolismo
19.
PLoS Pathog ; 13(9): e1006589, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28953979

RESUMO

The ability of intracellular pathogens to manipulate host-cell viability is critical to successful infection. Some pathogens promote host-cell survival to protect their replicative niche, whereas others trigger host-cell death to facilitate release and dissemination of the pathogen after intracellular replication has occurred. We previously showed that the intracellular fungal pathogen Histoplasma capsulatum (Hc) uses the secreted protein Cbp1 to actively induce apoptosis in macrophages; interestingly, cbp1 mutant strains are unable to kill macrophages and display severely reduced virulence in the mouse model of Hc infection. To elucidate the mechanism of Cbp1-induced host-cell death, we performed a comprehensive alanine scanning mutagenesis and identified all amino acid residues that are required for Cbp1 to trigger macrophage lysis. Here we demonstrate that Hc strains expressing lytic CBP1 alleles activate the integrated stress response (ISR) in infected macrophages, as indicated by an increase in eIF2α phosphorylation as well as induction of the transcription factor CHOP and the pseudokinase Tribbles 3 (TRIB3). In contrast, strains bearing a non-lytic allele of CBP1 fail to activate the ISR, whereas a partially lytic CBP1 allele triggers intermediate levels of activation. We further show that macrophages deficient for CHOP or TRIB3 are partially resistant to lysis during Hc infection, indicating that the ISR is critical for susceptibility to Hc-mediated cell death. Moreover, we show that CHOP-dependent macrophage lysis is critical for efficient spread of Hc infection to other macrophages. Notably, CHOP knockout mice display reduced macrophage apoptosis and diminished fungal burden and are markedly resistant to Hc infection. Together, these data indicate that Cbp1 is required for Hc to induce the ISR and mediate a CHOP-dependent virulence pathway in the host.


Assuntos
Apoptose/imunologia , Genes Fúngicos/genética , Histoplasma/metabolismo , Histoplasmose/microbiologia , Macrófagos/metabolismo , Fator de Transcrição CHOP/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Feminino , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/microbiologia , Camundongos , Virulência/genética
20.
J Biol Chem ; 292(12): 4801-4810, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28154008

RESUMO

Fungal cell walls contain ß-glucan polysaccharides that stimulate immune responses when recognized by host immune cells. The fungal pathogen Histoplasma capsulatum minimizes detection of ß-glucan by host cells through at least two mechanisms: concealment of ß-glucans beneath α-glucans and enzymatic removal of any exposed ß-glucan polysaccharides by the secreted glucanase Eng1. Histoplasma yeasts also secrete the putative glucanase Exg8, which may serve a similar role as Eng1 in removing exposed ß-glucans from the yeast cell surface. Here, we characterize the enzymatic specificity of the Eng1 and Exg8 proteins and show that Exg8 is an exo-ß1,3-glucanase and Eng1 is an endo-ß1,3-glucanase. Together, Eng1 and Exg8 account for nearly all of the total secreted glucanase activity of Histoplasma yeasts. Both Eng1 and Exg8 proteins are secreted through a conventional secretion signal and are modified post-translationally by O-linked glycosylation. Both glucanases have near maximal activity at temperature and pH conditions experienced during infection of host cells, supporting roles in Histoplasma pathogenesis. Exg8 has a higher specific activity than Eng1 for ß1,3-glucans; yet despite this, Exg8 does not reduce detection of yeasts by the host ß-glucan receptor Dectin-1. Exg8 is largely dispensable for virulence in vivo, in contrast to Eng1. These results show that Histoplasma yeasts secrete two ß1,3-glucanases and that Eng1 endoglucanase activity is the predominant factor responsible for removal of exposed cell wall ß-glucans to minimize host detection of Histoplasma yeasts.


Assuntos
Glucana 1,3-beta-Glucosidase/metabolismo , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Histoplasma/enzimologia , Histoplasmose/microbiologia , Histoplasma/metabolismo , Histoplasma/patogenicidade , Humanos , Especificidade por Substrato , beta-Glucanas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...